California N Index:

A Tool to Assess N Management for Environmental Conservation

Z. Kabir, D. Chessman and J. Delgado USDA-NRCS and USDA-ARS

N Fertilizer

- Nitrogen is the engine of modern Agriculture
- All Plants & Animals need N to make their proteins, DNA and RNA
- However, if we don't watch out, N fertilizer could destroy our planet

Global N Balance

The Flow of Nitrogen

The Flow of Nitrogen

Eutrophication at Gulf Coast Water

The map shows concentrations of phytoplankton, the algal blooms that contribute to dead zones, in Gulf Coast waters.

Satellite view of 2011 massive Lake Erie algal bloom, caused chiefly by N & P runoff from fertilizer/manure.

Source: NASA

Lake Erie Becomes Eerie

High N & P levels in Maumee and Sandusky rivers from Ag fields that drain into Lake Erie

Source: NASA

USDA-NRCS

Nutrient Management Plan (NMP)

Irrigation Water Management (IWM)

 Comprehensive Nutrient Management Plan (CNMP)

USDA-NRCS

USDA-NRCS

NMP

- Financial Assistance- 8 scenarios of payments
- IWM
 - Financial Assistance- 10 scenarios of payments

CNMP

- Land treatment
- Nutrient management
- Waste management

Screening and ranking

Nitrate Ground Water Pollution Hazard Index (HI) Tool

- Crop Characteristics
- Soil Properties
- Type of Irrigation System use
- Tillage practices

Do not considered HI Tool

- Depth to groundwater
- Aquifer Recharge Rate
- Farm Management Practices

Effect of N fertilizer rate applications on yield and N uptake by irrigated corn (Adapted from Bock and Hergert, 1991). Potential N available to leach (NAL) assuming major pathway for losses is leaching. The NAL was estimated as NAL = N applied – N uptake.

N-Index

Essential components of N index (NI) (From Shaffer and Delgado, 2002)

A JAVA version of the Nitrogen Index. The Nitrogen Index has a dropdown menu that can be used to select a region (such as California) and its accompanying data. Users can alternate between English and Spanish versions of the menu just by clicking the desired language.

Silage Corn-Winter Forage Cropping System

N2O Index

Definitions of Outputs

Economic Assessment

Ranking Matrix

Save File

Generate Report

Vegetable Grower

Each Management Category with N Risk

California Nitrogen Index 4.4			tegory with it	NISK	_ IX
Close	None or Very Low	Low	Medium	High	Very High
Irrigation System	-	×	-	-	· .
Nitrogen Available to Leach Potent	ial _	-	-	-	\times
Estimated Nitrate Leaching	-	-	-	-	×
Aquifer Leaching Risk	-	-	-	×	-
NH3 Volatilization	×	-	-	-	-
Nitrogen Application Rate	-	-	-	-	×
Proximity of Nearest Field Edge to Named Stream or Lake	-	-	×	-	-
Denitrification	-	-	-	-	×
Volatilization Susceptible N Applicat Method	tion X	-	-	-	-
Rooting Depths and Crop Rotation	-	-	-	-	×
Soil Erosion (Wind & Water)	-	-	-	-	-
Tile Drainage	×	-	-	-	-
Runoff Class (Runoff Class Table)	-	-	×	-	-
Irrigation Erosion	×	-	-	-	-
Vegetative Buffer	-	-	-	-	×

👣 California Nitrogen Index 4.4.1 | Econ... 💶 🔲 🗙

Ammonia Volatilization

3.60 \$ / a y (Loss)

Denitrification

(202.86 \$/ay(Loss)

Total N Leached

831.01 \$ / a y (Loss)

Residual Nitrate

456.10 \$ / a y (Loss)

Thank You

